Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa

نویسندگان

  • Zhu Mao
  • Steven D. JacobSen
  • Daniel J. FroSt
  • catherine a. MccaMMon
  • erik h. hauri
  • thoMaS S. DuFFy
چکیده

The single-crystal elastic properties of Fe-bearing wadsleyite with 1.93 wt% H2O (Mg1.634Fe0.202H0.305SiO4) have been determined by Brillouin scattering. At ambient conditions, the aggregate bulk and shear moduli (KS0, G0) of this wadsleyite are 156.2(5) and 98.0(3) GPa, respectively. Compared to the corresponding anhydrous wadsleyite, 1.93 wt% H2O lowers KS0 and G0 by 8.1% and 9.3%, respectively. High-pressure measurements up to 12 GPa show that the pressure derivative of the bulk modulus, K′S0 = 4.8(1), is similar to that of the anhydrous Fe-wadsleyite with reported values of 4.6–4.74, but the addition of H2O increases the pressure derivative of the shear modulus, G0′ from 1.5(1) to 1.9(1). This contrasts with the G0′ of Fe-free wadsleyite, which is the same within uncertainty for the hydrous and anhydrous phases. As a result, both the compressionaland shear-wave velocities (vP, vS) of hydrous Fe-bearing wadsleyite are about 200(±24) m/s slower than anhydrous Fe-bearing wadsleyite at transition zone pressures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-crystal elasticity of wadsleyites, β -Mg2SiO4, containing 0.37–1.66 wt.% H2O

The presence of hydrogen can affect elastic properties and seismic velocities of minerals in the Earth's upper mantle. In this study, the secondorder elastic constants of hydrous wadsleyites containing 0.37, 0.84, and 1.66 wt.% H2O were determined by Brillouin scattering at ambient conditions. Measurements were performed on at least three independent crystal planes for each composition. The agg...

متن کامل

Elasticity of hydrous wadsleyite to 12 GPa: Implications for Earth’s transition zone

[1] Knowledge of the pressure effect on elasticity of hydrous olivine polymorphs is necessary to model seismic wave speeds for potential hydrous regions of the mantle. Here we report single-crystal elastic properties of wadsleyite, b-Mg2SiO4, with 0.84 wt.% H2O measured to 12 GPa by Brillouin scattering. Pressure derivatives of the aggregate bulk modulus, KS0, and shear modulus, G 0 0, of hydro...

متن کامل

Quantitative analysis of hydrogen sites and occupancy in deep mantle hydrous wadsleyite using single crystal neutron diffraction

Evidence from seismological and mineralogical studies increasingly indicates that water from the oceans has been transported to the deep earth to form water-bearing dense mantle minerals. Wadsleyite [(Mg, Fe2+)2SiO4] has been identified as one of the most important host minerals incorporating this type of water, which is capable of storing the entire mass of the oceans as a hidden reservoir. To...

متن کامل

Elasticity of single-crystal iron-bearing pyrope up to 20 GPa and 750 K

Elastic properties of the major constituent minerals in the Earth’s upper mantle at relevant high pressure–temperature (P–T ) conditions are crucial for understanding the composition and seismic velocity structures of this region. In this study, for the first time, we have measured the single-crystal elasticity of natural Fe-bearing pyrope, Mg2.04Fe0.74Ca0.16Mn0.05Al2Si3O12, using in situ Brill...

متن کامل

Olivine Hydration in the Deep Upper Mantle: Effects of Temperature and Silica Activity

Although water controls the biology and geology of the surface, hydrogen is perhaps the most poorly constrained compositional variable in the bulk Earth. Its concentration in the upper mantle appears to be controlled by its solubility as hydroxyl in the nominally anhydrous silicate phases, olivine, pyroxene, garnet, wadsleyite, and ringwoodite. Here we describe a series of experiments showing t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011